微积分的历史意义

一:微积分的意义

一言以蔽之:以直代曲。

微积分的意义在于利用直线的线性变化量来代替非线性函数的变化量,从而可以求得精确的曲顶梯形的面积。但是微积分的意义远不止于此,无数自然界的现象都可以通过一定的方法建立微分方程组来描述之。从纯粹的数学意义上而言,微积分利用线性手段解决非线性问题的思路乃是空前绝后的,伴随着微积分的建立,纯粹数学平稳的渡过了第二次数学危机。

二:学微积分到底有什么意义

微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。人类对自然的探索永远不会有终点。

微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。

三:微积分历史

微积分产生

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是

牛顿-莱布尼茨公式

研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。数学首先从对运动(如天文、航海问题等)的研究中引出了一个基本概念,在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数——或变量间关系——的概念。紧接着函数概念的采用,产生了微积分,它是继欧几里得几何之后,全部数学中的一个最大的创造。围绕着解决上述四个核心的科学问题,微积分问题至少被十七世纪十几个最大的数学家和几十个小一些的数学家探索过。其创立者一般认为是牛顿和莱布尼茨。在此,我们主要来介绍

牛顿

这两位大师的工作。

实际上,在牛顿和莱布尼茨作出他们的冲刺之前,微积分的大量知识已经积累起来了。十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

例如费马、巴罗、笛卡尔都对求曲线的切线以及曲线围成的面积问题有过深入的研究,并且得到了一些结果,但是他们都没有意识到它的重要性。在十七世纪的前三分之二,微积分的工作沉没在细节里,作用不大的细微末节的推理使他们筋疲力尽了。只有少数几个大学家意识到了这

莱布尼茨

个问题,如詹姆斯·格里高利说过:“数学的真正划分不是分成几何和算术,而是分成普遍的和特殊的”。而这普遍的东西是由两个包罗万象的思想家牛顿和莱布尼茨提供的。十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿

牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

莱布尼茨

德国的莱布尼茨(又译“莱布尼兹”)是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现今我们使用的微积分通用符号就是当时莱布尼茨精心选用的。...余下全文>>

四:微积分学的历史背景

数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼兹大体上完成的,但不是由他们发明的。——恩格斯从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现出一个完全崭新的面貌。而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。科学对数学提出的种种要求,最后汇总成多个核心问题:(1)运动中速度与距离的互求问题即,已知物体移动的距离S表为时间的函数的公式S=S(t),求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。比如,计算物体在某时刻的瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬间,物体移动的距离和所用的时间是0,而0/0是无意义的。但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。已知速度公式求移动距离的问题,也遇到同样的困难。因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。(2)求曲线的切线问题这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。由于研究天文的需要,光学是十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律,这里重要的是光线与曲线的法线间的夹角,而法线是垂直于切线的,所以总是就在于求出法线或切线;另一个涉及到曲线的切线的科学问题出现于运动的研究中,求运动物体在它的轨迹上任一点上的运动方向,即轨迹的切线方向。 (3)求长度、面积、体积、与重心问题等这些问题包括,求曲线的长度(如行星在已知时期移动的距离),曲线围成的面积,曲面围成的体积,物体的重心,一个相当大的物体(如行星)作用于另一物体上的引力。实际上,关于计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的进一步工作失败了,直到下一世纪才得到新的结果。又如求面积问题,早在古希腊时期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间[0,1]上与x轴和直线x=1所围成的面积S,他们就采用了穷竭法。当n越来越小时,右端的结果就越来越接近所求的面积的精确值。但是,应用穷竭法,必须添上许多技艺,并且缺乏一般性,常常得不到数字解。当阿基米德的工作在欧洲闻名时,求长度、面积、体积和重心的兴趣复活了。穷竭法先是逐渐地被修改,后来由于微积分的创立而根本地修改了。 (4)求最大值和最小值问题炮弹在炮筒里射出,它运行的水平距离,即射程,依赖于炮筒对地面的倾斜角,即发射角。一个“实际”的问题是求能获得最大射程的发射角。十七世纪初期,Galileo断定(在真空中)最大射程在发射角是45时达到;他还得出炮弹从各个不同角度发射后所达到的不同的最大高度。研究行星的运动也涉及到最大值和最小值的问题,如求行星离开太阳的距离。

扫一扫手机访问

发表评论